Array
(
    [responseDate] => 2025-12-11T14:52:50Z
    [request] => https://revistas.ucm.es/index.php/RGID/oai
    [GetRecord] => SimpleXMLElement Object
        (
            [record] => SimpleXMLElement Object
                (
                    [header] => SimpleXMLElement Object
                        (
                            [identifier] => oai:ojs.revistas.ucm.es:article/94234
                            [datestamp] => 2024-07-18T07:16:32Z
                            [setSpec] => RGID:ART
                        )

                    [metadata] => SimpleXMLElement Object
                        (
                            [dc] => SimpleXMLElement Object
                                (
                                    [title] => Array
                                        (
                                            [0] => A hybrid book recommendation model using deep learning, collaborative, and content filtering
                                            [1] => Un modelo híbrido para la recomendación de libros utilizando reconocimiento facial, filtrado colaborativo y por contenido
                                        )

                                    [creator] => Puerto Cuadros, Eduard Gilberto
                                    [subject] => Array
                                        (
                                            [0] => recommendation system
                                            [1] => facial recognition
                                            [2] => deep learning
                                            [3] => collaborative filtering
                                            [4] => content filtering
                                            [5] => library
                                            [6] => sistema de recomendación
                                            [7] => reconocimiento facial
                                            [8] => aprendizaje profundo
                                            [9] => filtrado colaborativo
                                            [10] => filtrado por contenido
                                            [11] => biblioteca
                                        )

                                    [description] => Array
                                        (
                                            [0] => The continuous evolution of technology is transforming the way libraries interact with their users, and in turn, how users engage with books. Recommendation systems are conceived as information filtering systems whose goal is to provide access to personalized information (books of interest, magazines, databases, scientific articles, rooms, etc.) to enhance the user experience, promote the usability of bibliographic resources, and optimize services. This article proposes a hybrid model for the automatic recommendation of books that combines three processes in two phases: user identification, collaborative filtering, and content filtering. In the first phase, the user recognition process is carried out using techniques that implement deep learning, and in the second phase, the recommendation processes are integrated through collaborative filtering and content filtering. A case study was developed in a library environment for recommending books and was evaluated using classic information retrieval metrics. The results were compared with other more robust recommendation models, obtaining satisfactory outcomes.
                                            [1] => La continua evolución de la tecnología transforma la manera en que las bibliotecas interactúan con sus usuarios, y estos a su vez con los libros. Los sistemas de recomendación se conciben como sistemas de filtrado de información cuyo objetivo es proporcionar acceso a información personalizada (libros de interés, revistas, bases de datos, artículos científicos, salas, etc.) para mejorar la experiencia del usuario, fomentar la usabilidad de los recursos bibliográficos y optimizar los servicios. Este artículo propone un modelo híbrido de recomendación automática de libros que ensambla tres procesos en dos fases: identificación del usuario, filtrado colaborativo y filtrado por contenido. En la primera fase, se lleva a cabo el proceso de reconocimiento de usuario con técnicas que implementan aprendizaje profundo y, en la segunda fase, se integran los procesos de recomendación mediante filtrado colaborativo y por contenido. Se elaboró un caso de estudio en un entorno biblioecario para recomendar libros y fue evaluado mediante métricas clásicas de recuperación de información. Se compararon los resultados con otros modelos de recomendación más robustos, obteniendo resultados satisfactorios. 
                                        )

                                    [publisher] => Ediciones Complutense
                                    [date] => 2024-07-18
                                    [type] => Array
                                        (
                                            [0] => info:eu-repo/semantics/article
                                            [1] => info:eu-repo/semantics/publishedVersion
                                            [2] => Artículo revisado por pares
                                        )

                                    [format] => application/pdf
                                    [identifier] => Array
                                        (
                                            [0] => https://revistas.ucm.es/index.php/RGID/article/view/94234
                                            [1] => 10.5209/rgid.94234
                                        )

                                    [source] => Array
                                        (
                                            [0] => Revista General de Información y Documentación; Vol. 34 No. 1 (2024); 45-54
                                            [1] => Revista General de Información y Documentación; Vol. 34 Núm. 1 (2024); 45-54
                                            [2] => 1988-2858
                                            [3] => 1132-1873
                                        )

                                    [language] => spa
                                    [relation] => Array
                                        (
                                            [0] => https://revistas.ucm.es/index.php/RGID/article/view/94234/4564456570183
                                            [1] => /*ref*/Amos, B., Ludwiczuk, B., & Satyanarayanan, M. [2016]. Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science. Burke, R. D. [2002]. “Hybrid recommender systems: Survey and experiments”. User modeling and user-adapted interaction, 12(4), 331-370. Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. [2018, May]. “Vggface2: A dataset for recognising faces across pose and age”. In 2018 13th IEEE international conference on automatic face & gesture recognition, 67-74. IEEE. Chen, X., Yao, L., McAuley, J., Zhou, G., & Wang, X. [2023]. “Deep reinforcement learning in recommender systems: A survey and new perspectives”. Knowledge-Based Systems, 264, 110335. Cheng, H. and Cheng-Te L. [2021]. “RetaGNN: Relational temporal attentive graph neural networks for holistic sequential recommendation”. In Proceedings of the Web Conference. 2968–2979. Chong Chen, Min Zhang, Chenyang Wang, Weizhi Ma, Minming Li, Yiqun Liu, and Shaoping [Ma. 2019]. “An efficient adaptive transfer neural network for social-aware recommendation”. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 225–234. Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. [2011]. “Collaborative filtering recommender Systems”. Foundations and Trends in Human-Computer Interaction, 4(2), 81-173. Geitgey, A. [2022]. Face Recognition. GitHub repository. https://github.com/ageitgey/face_recognition Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. [2017]. “DeepFM: a factorization-machine based neural network for CTR prediction”. arXiv preprint arXiv:1703.04247. Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., ... & Li, Y. [2023]. “A survey of graph neural networks for recommender systems: Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1(1), 1-51. IJntema, W., Goossen, F., Frasincar, F., & Hogenboom, F. [2010]. “Ontology-based news recommendation”. Proceedings of the International Workshop on Business Intelligence and the Web (BEWEB), 1-6. Koren, Y., Bell, R., & Volinsky, C. [2009]. “Matrix factorization techniques for recommender systems”.Computer, 42(8), 30-37. Kortli, Y., Jridi, M., Al Falou, A., & Atri, M. [2020]. “Face recognition systems: A survey”. Sensors, 20(2), 342. Lin, Y., Liu, Y., Lin, F., Zou, L., Wu, P., Zeng, W., ... & Miao, C. [2023]. A survey on reinforcement learning for recommender systems. IEEE Transactions on Neural Networks and Learning Systems. Lops, P., De Gemmis, M., & Semeraro, G. [2011]. “Content-based recommender systems: State of the art and trends”. In Recommender systems handbook, 73-105). Springer, Boston, MA. McAuley, J., Targett, C., Shi, Q., & van den Hengel, A. [2015]. “Image-based recommendations on styles and substitutes”. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, 43-52). Pandey, S. K., & Gelin, R. [2022]. “Real-time deep learning based facial emotion recognition system using optimized convolutional neural network and OpenCV”. Information Systems Frontiers, 24(4), 925-941. Poudel, R. P. K., Liwicki, S., & Cipolla, R. [2020]. Frast: Face Recognition Assisted System for the Blind Using Synthetic Data. arXiv preprint arXiv:2006.01987. Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. [2022]. “A survey on knowledge graph-based recommender systems”. IEEE Trans. Knowl. Data Eng. 34, 8 (2022), 3549–3568. Sabogal, G. M. V., Correa, Y. S. C., & Rendón, C. D. D. [2021]. “Desarrollo de una aplicación web progresiva para la recomendación de películas y libros mediante la técnica de filtrado colaborativo”. Revista CIES Escolme, 12(1), 139-150. Salehi, M., Kamalabadi, I. N., & Ghaznavi Ghoushchi, M. B. [2015]. “Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering”. Education and Information Technologies, 20(1), 61-75. Schroff, F., Kalenichenko, D., & Philbin, J. [2015]. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823. Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. [2014]. “Deepface: Closing the gap to human-level performance in face verification”. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1701-1708). Wang, C., Sun, L., Hou, X., & Xie, Y. [2022]. “Design of intelligent book sorting system based on PLC control”. In International Symposium on Control Engineering and Robotics (ISCER), Changsha, China, 138-142. doi:10.1109/ISCER55570.2022.00030. https://ieeexplore.ieee.org/document/9894475 Wang, Z., Yu, Z., Zheng, D., Zhang, Y., & Zheng, D. [2021]. An Access Control System Based on Face Recognition and Web Technology. Computational Intelligence and Neuroscience. Widayanti, R., Chakim, M. H. R., Lukita, C., Rahardja, U., & Lutfiani, N. [2023]. “Improving Recommender Systems using Hybrid Techniques of Collaborative Filtering and Content-Based Filtering”. Journal of Applied Data Sciences, 4(3), 289-302. Wang, Y., Ma, W., Zhang, M., Liu, Y., & Ma, S. [2023]. “A survey on the fairness of recommender systems”. ACM Transactions on Information Systems, 41(3), 1-43. Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and Tat-Seng Chua. [2020]. “Hierarchical fashion graph network for personalized outfit recommendation”. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 159–168. Yi, D., Lei, Z., Liao, S., & Li, S. Z. [2014]. Learning face representation from scratch. arXiv preprint arXiv:1411.7923. Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Baoxing Huai, Tongzhu Liu, and Enhong Chen. [2021]. “Drug package recommendation via interaction-aware grap induction”. In Proceedings of the Web Conference. 1284-1295. 
                                        )

                                    [rights] => Derechos de autor 2024 Revista General de Información y Documentación
                                )

                        )

                )

        )

)