Array
(
    [responseDate] => 2024-11-19T13:24:56Z
    [request] => https://revistas.marilia.unesp.br/index.php/bjis/oai
    [GetRecord] => SimpleXMLElement Object
        (
            [record] => SimpleXMLElement Object
                (
                    [header] => SimpleXMLElement Object
                        (
                            [identifier] => oai:ojs.www2.marilia.unesp.br:article/15462
                            [datestamp] => 2024-08-21T20:51:27Z
                            [setSpec] => Array
                                (
                                    [0] => bjis:ARTIGOS
                                    [1] => driver
                                )

                        )

                    [metadata] => SimpleXMLElement Object
                        (
                            [dc] => SimpleXMLElement Object
                                (
                                    [title] => Array
                                        (
                                            [0] => Artificial Intelligence for Retrieving Open Data: reflections and propositions for the user experience on the Brazilian Open Data Portal
                                            [1] => Inteligência Artificial para Recuperação de Dados Abertos: reflexões e proposições para a experiência do usuário no Portal Brasileiro de Dados Abertos
                                        )

                                    [creator] => Array
                                        (
                                            [0] => Teixeira de Oliveira, Danielle
                                            [1] => Nascimento Silva, Patrícia
                                            [2] => Cesar Mafra Pereira, Frederico
                                        )

                                    [subject] => Array
                                        (
                                            [0] => Inteligência Artificial
                                            [1] => Recuperação de informação
                                            [2] => Dados abertos
                                            [3] => Dados governamentais abertos
                                            [4] => Usuários de informação
                                            [5] => Artificial intelligence
                                            [6] => Information retrieval
                                            [7] => open data
                                            [8] => open government data
                                            [9] => Information users
                                        )

                                    [description] => Array
                                        (
                                            [0] => In the so-called Data Era, one of the characteristics of society is the high involvement with technology and the great availability of information in the most diverse formats. Some of this information refers specifically to open government and public management data, generated by government administration, which is called Open Government Data (OGD). Due to the importance attributed to these data sets and their enormous volume, it is a challenge to implement an information retrieval system that meets the needs of different users. This research aimed to analyze artificial intelligence techniques to improve the user experience in recovering OGD on the Brazilian Open Data Portal, which is the official instrument for making open data available from the Federal Public Administration. To achieve this objective, descriptive and exploratory research was carried out, with qualitative analysis, using bibliographical and documentary research techniques and direct observation. It was concluded that the Portal presents gaps in information retrieval that compromise user satisfaction and the use of artificial intelligence techniques represents a real possibility to resolve the identified demands.
                                            [1] => Na denominada Era dos Dados, uma das características da sociedade é o alto envolvimento com a tecnologia e a grande disponibilidade de informações nos mais diversos formatos. Algumas dessas informações referem-se especificamente a dados abertos de governo e de gestão pública, gerados pela administração governamental, que são denominados Dados Governamentais Abertos (DGA). Em decorrência da importância atribuída a estes conjuntos de dados e ao seu enorme volume, é um desafio implementar um sistema de recuperação de informação que atenda às necessidades de usuários diversos. Esta pesquisa teve como objetivo analisar técnicas de inteligência artificial para aprimorar a experiência do usuário na recuperação de DGA no Portal Brasileiro de Dados Abertos, que é o instrumento oficial de disponibilização de dados abertos da Administração Pública Federal. Para atingir esse objetivo foi realizada uma pesquisa descritiva e exploratória, com análise qualitativa, utilizando técnicas de pesquisa bibliográfica, documental e observação direta. Concluiu-se que o Portal apresenta lacunas na recuperação de informação que comprometem a satisfação do usuário e a utilização de técnicas de inteligência artificial representam uma possibilidade real para sanar as demandas identificadas.
                                        )

                                    [publisher] => Faculdade de Filosofia e Ciências - UNESP-Marília
                                    [date] => 2024-04-08
                                    [type] => Array
                                        (
                                            [0] => info:eu-repo/semantics/article
                                            [1] => info:eu-repo/semantics/publishedVersion
                                        )

                                    [format] => Array
                                        (
                                            [0] => application/pdf
                                            [1] => text/html
                                        )

                                    [identifier] => Array
                                        (
                                            [0] => https://revistas.marilia.unesp.br/index.php/bjis/article/view/15462
                                            [1] => 10.36311/1981-1640.2024.v18.e024016
                                        )

                                    [source] => Array
                                        (
                                            [0] => Brazilian Journal of Information Science: Research Trends; Vol. 18 (2024): Continuous publishing; e024016
                                            [1] => Brazilian Journal of Information Science: Research Trends; Vol. 18 (2024): Publicación continua; e024016
                                            [2] => Brazilian Journal of Information Science: research trends; v. 18 (2024): publicação contínua; e024016
                                            [3] => 1981-1640
                                        )

                                    [language] => por
                                    [relation] => Array
                                        (
                                            [0] => https://revistas.marilia.unesp.br/index.php/bjis/article/view/15462/16321
                                            [1] => https://revistas.marilia.unesp.br/index.php/bjis/article/view/15462/16322
                                        )

                                    [rights] => Array
                                        (
                                            [0] => Copyright (c) 2024 Danielle Teixeira de Oliveira, Patrícia Nascimento Silva, Frederico Cesar Mafra Pereira
                                            [1] => https://creativecommons.org/licenses/by-sa/4.0
                                        )

                                )

                        )

                )

        )

)